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Results are given of a theoretical and experimental study of the effect of heating 

the walls of a semiopen tube under conditions of acoustic resonance. 

It is well known that acoustic oscillations of a gas column generate nonuniform heating 

of the tube walls. For large-amplitude resonance oscillations the closed end of the tube may 

be heated up to 1000~ [i]. The difficulty in a theoretical study of this effect consists 
primarily in the nonexistence of an acoustic theory of resonance oscillations. In the present 

paper it is attempted to describe the thermoacoustic effect in a semiopen tube on the basis 
of an acoustic approximation to the theory of resonance oscillations, obtained for the case 

of high-frequency oscillations with the use of a nonlinear boundary condition. 

Consider gas oscillations in a cylindrical tube of length L and radius R, one of whose 

edges is a harmonically oscillating piston, the other end of the tube being open. We intro- 

duce cylindrical coordinates, so that the piston is located at x = 0, the open end is at 
x = L, at the tube axis r = 0, and on the wall r = R. 

The motion and heat exchange of an ideal gas with constant specific heats Cp, cv, con- 
stant coefficients of dynamic viscosity ~ and heat conduction % are described by the equations 

of motion, continuity, energy, and state. In cylindrical coordinates with axial symmetry they 
are [i]: 
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We assume that oscillations of comparatively weak nonlinearity are established in the 
tube, i.e., if the parameter E = U~/~L is introduced, it can be assumed to be a small quantity. 

For a semiopen tube s = 0.i corresponds to U~ -~ 54 m/sec. 

The assumption of a small ~ makes it possible to solve the system of equations (i) by a 

perturbation method, with the solutions sought in the form of a power series expansion in the 
small parameter E [2]. 

The general solution of the first approximation equations for a long tube (R/L << i) with 
To = const was given in [i]. However, the expression for vl in [i] does not satisfy the 

boundary condition on the wall, where both vl and ul must vanish. Requiring a finite (vlr) 

on the tube axis and vl = 0 on the wall, we obtain 
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and the subscript 1 corresponds to the first approximation. We restrict ourselves to the case 
of high-frequency oscillations, i.e., R/m-7-~->> I. For air Pr = 0.71, and, consequently, 
R/Pr~/2u >> i~ Using asymptotic expansions of Bessel functions for large argument [3], and 
performing the replacements 
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where X and Y are determined by the Gutin relations [5]: 
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Putting C = Icl(cos + i sin ~), a = ao + iB, the boundary conditions (10), (ii) give in the 

near-resonance region the following system for determining IcI, ~, ao, and B after some trans- 
formations: 
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where M = mllco; Y = Y/poCo; 2 = XlPoco; {C-I = {C{Ipoc~. 

Expressions (5) and (6) can be reduced to the form 
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The heating effect of tube walls is determined by the terms having a nonvanishing averaged 
part. Therefore, only even-ordered terms provide a contribution: 
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The second-order equations with boundary conditions are 
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Restricting ourselves to the first term in expression (16), Eq. 
in this case it can be shown that 
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Performing the integration, we obtain 

(17) 

(17) need not be solved, since 
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For small-amplitude oscillations the neglect of terms with g4 and higher terms is fully justi- 
fied, and expression (18) can be considered as final. However, an estimate shows that for 

E 9 0.i it is necessary to include the second term in (16). Averaging over time and integra- 
ting the fourth-order energy equation over cross section, we obtain 
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Fig,~ l. Dis:ribution of the dimensionleas velocity fluctuation 
difference (points), dimensionless velocity fluctuation ampli- 

tude (curves) (a), and the thermal flux (points, experiment; 
curves, theory) (b) along the tube: i) Lo = 3.485 m; 2) 4.485 m; 
3) 5 .485  m. 
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The second-- and third-order equations are very complicated. To take into account fourth-order 
effects we confine ourselves to the solution of the time-averaged Eq. (17). Putting Pr = 1 

(so as to avoid awkward results), we obtain: 
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where u2, v2, p2, and T2 are the averaged parts of the corresponding sec3nd-order quantities. 
Retaining in (19) only terms due to the interaction of given quantities, we have 
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Fig. 2. Oscillograms of pressure (above) and velocity (below) 

at resonance in a tube of length Lo = 3.485 m with different 
gain coefficients--i) x = 0.21--1; P = 0.721 U-= 0.14," 2) x = 

0.728; P = 0.56; U = 0.37; 3) x = 0.987; P = 0.27; U = 0.45. 

R R 

The final expression for <q> including fourth-order terms with z = 1.4 is 

Op2 d r \ .  
Ox / 

' ~ l < q > = - ~ -  ~oC5 IcI 2 vr2wo~ 1,47ch 2[3 -f- T 1~]2 [7,07 -- 0,389ch22[~ 4- 

, 1,366sh 2 2[3] + 2cos 2 (fix + c%) q- J~ 12 • -- [0,7sin 4 (kx + O:o) - -  

- -  4,54cos 4 (kx + C*o) + 4,74sin 2 (kx + c~e) sh 213 - -  12,09cos 2 (kx -6 ~o) ch 2[B-- 

(21) 

-- 1.4cos 2 (kx + ~Xo) sh 213 + 
O)X 

CO 
(3,36sin 2 (kx -}- ~Zo) - -  2,8cos 2 (kx+o~o) ch 2t~]} �9 

The experimental part of this work includes the study of resonance oscillations in a 

semiopen tube and of thermal effects on its wall. Measurements of the distributions of 
velocity oscillation amplitudes along the tube and of resonance curves were carried out in 

an instrument described in detail in [6]. 

For the thermal measurements we prepared a probe, being a segment tube of length 0.i m 

with flanges, To minimize heat losses in the axial direction of the probe to the bulk the 
tubes were connected through asbestos washers of thickness 0.01 m. The external surface of 

the probe was under conditions of free heat transfer with the surrounding medium with a con- 

stant heat-transfer coefficient, determined by the Kramers equation [7]. The wall tempera- 
ture was measured by a thermocouple, and the temperature of the surrounding medium by a 

thermometer. The measurements showed that 20 min were sufficient to establish a stationary 
regime of heat transfer. Assuming that the temperature is uniform over the whole mass of 

the probe, one can write 

aT -- ( q > SI__~*S2(T-_ T=). ( 2 2 )  mrnCp Ot 

Integrating (22) for initial condition T = T~ at t = 0, and carrying out the limiting transi- 

tion at t = =, we obtain Tmax = T~ + <q>Sl/a*S2, whence <q> = (Tma x -- T~)(~*S2/SI). 

Figure la shows the distribution of experimentally measured dimensionless velocity 

fluctuation amplitude, calculated from expression (15), along the axis for three tube lengths. 

It follows from the figure that near the piston there is full agreement between theory and 
measurement. The deviation is maximum at the open end, but does not exceed 17% for a tube of 

length Lo = 3.485 m, This is easily explained by considering the pressure (above) and 
velocity (below) fluctuation oseillograms, presented in Fig. 2, corresponding to different 

distances from the open end of the tube of length Lo = 3.485 m. Near the piston the oscil- 

lations have a symmetric, nearly sinusoidal, shape. As the open end is approached the con- 
tribution of higher harmonics increases, and a shock is formed, while the acoustic approxi- 

mation to the theory of resonance oscillations was obtained under the assumption of com- 
paratively weak nonlinear oscillations. This fact explains the better agreement between 

results for longer tubes, though even for a tube with Lo = 5.485 m the velocity amplitude 

reached i00 m/sec. The corresponding distributions of thermal flux are given in Fig. lb. 
The theoretical results have the feature that in Eq. (21) ]C] was replaced by the value of 

the velocity fluctuation amplitude at the open end. It is easily noted that <q> is maximum 
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Fig. 3. Dependence of the dimensionless velocity fluctuation 
differences (points) and dimensionless velocity fluctuation 

amplitude (curves) at the open end (a) and if the thermal flux 
(points, experiment; curve, theory) (b) at x = 0.125 on AW/~o 
in a tube of length Lo = 5.485 m. 

near the piston, i.e., where the velocity fluctuation amplitude is minimum. The thermal flux 
decreases upon getting away from the piston. 

Figure 3 shows resonance curves of the dimensionless amplitude and difference of longi- 

tudinal velocity fluctuations (Fig. 3a) as well as <q> according to theory and experiment 
(Fig. 3b). It is seen that the theory describes the experimental results well near resonance. 

The deviation increases further away from the resonance frequency. At Aw/wo = 0.5 experiment 
shows a second nonlinear resonance of the thermal flux <q>, though in Fig. 3a the second non- 
linear resonance of velocity fluctuations is expressed quite weakly. This is easily explained 

by properties of the second nonlinear resonance [6], 

Thus~ the acoustic approximation to the theory of nonlinear oscillations, with the use 
of a nonlinear boundary condition at the open end, is quite suitable for a theoretical descrip- 
tion of velocity fluctuation amplitudes reaching 150 m/sec. On this basis we succeeded in 

constructing a theory of thermoacoustic effects, describing satisfactorily experimental 
results with linear resonance. 

NOTATION 

L, cube length; R, radius; x, distance from the piston; r~ radial distance from the t~ibe 

axis; Cp and cv~ specific heats; ~ dynamic viscosity coeffici~nt~ ~, thermal conductivity; 
t, time~ {J and v, longitudinal and radial velocity components; p~ pressure; p, gas density; 

T, gas temperature; Rg, universal gas constant; s = U=/wL, a small parameter; U~, scale of 
velocity fluctuations; <0, angular frequencv~ co, speed of sound; J~, first-kind Bessel func- 
tion of the v-th order; x = Cp/CV; A~ S, C~ and ~, complex constants determined from the 

boundary conditions; ~ = P/0, coefficient of kinematic viscosity; Pr = u/~, Prandtl number; 
= l/Cpg~, thermal diffusivity coefficient; k = ~/co, wave number; 7, piston displacement 

amplitude; Z, total impedance of the open end of the tube; Zu, radiation impedance; X and Y, 
active and reactive parts of Zu; d~ tube diameter; ICi, ~ , absolute value and phase of C; ~o 
and B, active and reactive parts of ~; <q>, local time-averaged thermal flux to the tube wall; 

mp, mass of the probe; Cp, specific heat of the probe material; S~ and $2, areas of the inner 
and outer probe surfaces; T~, temperature of the surrounding medium (ambient); ~*, heat- 

transfer coefficient to the surrounding medium; Tmax, maximuln wall te_mperature that can be 
reached under given neat-trans er conditions; Lo, real tube length~ x x/L, dimensionless 
distance from the piston; U~ = (u~/Co)max, dimensionless velocity fluctuation amplitude at 
the axis; U = (u/co)max~ dimensionless velocity fluctuation difference; P = (P= - fl)2Po, 
dimensionless pressure fluctuation difference~ Pz and s largest and smallest p~essure vaJmes 

during an oscillation period; Po, atmospheric pressure; ~o, resonance frequency~ Aw = co- .:Jo; 
= ~2~/w~ width of the acoustic boundary layer; ! i~ a notation for amplitude; < > denote~s 

time averaging~ 

2. 
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THERMOPHYSICAL CHARACTERISTICS OF APROTONIC SOLVENTS AND ELECTROLYTES 

BASED ON THEM 

I. G. Gurevich, K. B. Gisina, 
V. K. Shchitnikov, and B. I. Tumanov 

UDC 536.223:541.135 

Measured and computed values of the thermal conducti~ity and heat capacity of a 
number of organic solvents and electrolytes based on them are presented~ 

As we have already noted previously [1-2], there are no systematic data in the literature 
on the physicochemical properties of a comparatively new class of electrolytes (based on 
organic solvents), which are used in chemical power sources (CPS) with alkali metal anodes 
[3, 4]. This remark applies to an even greater extent to their thermophysical characteristics 
as well. At the same time, a knowledge of the latter is necessary for calculations of the 

thermal operational regimes of these sources. 

We studied the temperature dependence of the thermal conductivity of such CPS solvents 

most widely used in practice: propylene carbonate (PC), y-butyrolactone {y-BL), tetrahydro- 
furane (THF), and their two-component mixtures. Lithium perchlorate (LiCIO~) was used as the 
ionogenic component ol the electrolyte. 

The procedure for cleaning and preparing the indicated solvents and electrolytes based 
on them for the experiment is described in detail in [i, 2]. 

In order to measure the thermal conductivity, we used the heated-probe method [5], using 
the apparatus developed at the ITMO AN BSSR [6]. The advantages of this method, which include 

the short time necessary for the tests (the duration of a single experiment does not exceed 
60-90 sec), small overheating of the medium~ and good contact b~ween the medium and the 

sensor, were especially important in application to volatile liquids, such as the substances 
being studied. 

The sensor-probe used in this work consisted of a coil 0.7 mm in diameter and length -30 
mm, made of a bifillar winding on a thin medical needle with diameter 0.5 mmof the heater 
(consisting of a manganese wire 0.I mm in diameter with resistance 50-60 ~) and a resistance 
thermometer (consisting of copper wire 0.05 mm in diameter with resistance of 3 ~ at 20~ 
the probe was covered with a thin lacquer layer for electrical insulation and to increase the 
mechanical strength,* The dimensions of the probe and of the measuring cell (diameter 30 mm, 
height 85 mm) permitted us to reduce the intrinsic heat capacity of the former to a minimum 
and ensure that the boundary conditions of the corresponding heat conduction problem, on whose 
solution the method is based, are satisfied. 

The so-called "relative" variant of the method, in which the thermal conductivity sought 
is determined by comparing the thermograms recorded on a potentiometer for a standard liquid 
and for the liquid being studied, is used on our apparatus. 

*The probes had to be changed often due to the strong corrosive action of the solvents studied. 
Naturally, the new probe required calibration using s standard fluid. 
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